Search results for "magnesium silicide"

showing 3 items of 3 documents

Performance evaluation and stability of silicide-based thermoelectric modules

2020

Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…

010302 applied physicsMaterials scienceOpen-circuit voltage02 engineering and technologyInternal resistanceCurrent collector021001 nanoscience & nanotechnologyMagnesium silicide01 natural sciencesIsothermal processVDP::Teknologi: 500::Elektrotekniske fag: 540chemistry.chemical_compoundThermoelectric generatorchemistry0103 physical sciencesThermoelectric effectSilicideComposite material0210 nano-technology
researchProduct

Design, assembly and characterization of silicide-based thermoelectric modules

2016

ID: 1143 In: Energy conversion and management, 13-21. Summary: Highlights•Novel silicide-based thermoelectric modules were experimentally investigated.•The modules produced high power of 1.04 W at 405 °C and 3.24 W at 735 °C.•An estimated module efficiency of 5.3% represent the highest reported for silicide systems.AbstractSilicides have attracted considerable attention for use in thermoelectric generators due mainly to low cost, low toxicity and light weight, in contrast to conventional materials such as bismuth and lead telluride. Most reported work has focused on optimizing the materials properties while little has been done on module testing. In this work we have designed and tested mod…

Energy storageThermoelectric equipment02 engineering and technology7. Clean energyThermal expansionBismuthchemistry.chemical_compoundDegradationMagnesium silicideHigher manganese silicideSilicide0202 electrical engineering electronic engineering information engineeringHigher manganese silicidesMagnesiumThermo-Electric materialsThermal expansion mismatchDirect energy conversion[CHIM.MATE]Chemical Sciences/Material chemistryThermoelectric materialsMagnesium silicides[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryConversion directeFuel TechnologyThermal expansionSilicidesMaterials scienceMaximum power principleCharacterization020209 energyEnergy Engineering and Power Technologychemistry.chemical_elementMagnesium silicideThermoelectric moduleThermo-electric modulesElectronic engineering[CHIM.CRIS]Chemical Sciences/Cristallography[CHIM]Chemical SciencesManganeseRenewable Energy Sustainability and the EnvironmentEquivalent circuitsThermoelectricityEngineering physicsLead tellurideThermoelectric generatorCross-section areaNuclear Energy and EngineeringchemistryEnergy transferConventional materialsÉnergieMaterials propertiesThermoelectric generatorsMaterials testing
researchProduct

Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials

2013

Author's version of an article in the journal: Journal of Electronic Materials. Also available from the publisher at: http://dx.doi.org/10.1007/s11664-013-2917-0 Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluat…

Materials scienceoxidationMetallurgycoatingengineering.materialCondensed Matter PhysicsThermoelectric materialsMagnesium silicide7. Clean energyDurabilityVDP::Teknologi: 500::Elektrotekniske fag: 540Electronic Optical and Magnetic MaterialsWaste heat recovery unitSkutteruditechemistry.chemical_compoundCoatingchemistryThermalMaterials ChemistryengineeringdurabilitySublimation (phase transition)SkutteruditeElectrical and Electronic Engineeringmagnesium silicideJournal of Electronic Materials
researchProduct